
Exact solution of an exclusion process with three classes of particles and vacancies

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 8399

(http://iopscience.iop.org/0305-4470/32/48/303)

Download details:

IP Address: 171.66.16.111

The article was downloaded on 02/06/2010 at 07:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/48
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 8399–8410. Printed in the UK PII: S0305-4470(99)03120-0

Exact solution of an exclusion process with three classes of
particles and vacancies

K Mallick†, S Mallick‡ and N Rajewsky§
† Department of Physics, Technion, 32000 Haifa, Israel and Service de Physique Theorique, C E
Saclay, F-91191 Gif-sur Yvette Cedex, France
‡ Institut d’Optique, Centre Scientifique d’Orsay B P 147, 91403 Orsay Cedex, France
§ Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

E-mail: mallick@spht.saclay.cea.fr(K Mallick) andrajewsky@math.rutgers.edu

Received 30 July 1999, in final form 1 September 1999

Abstract. We present an exact solution for an asymmetric exclusion process on a ring with three
classes of particles and vacancies. Using a matrix-product Ansatz, we find exact expressions for
the weights of the configurations in the stationary state. The solution involves tensor products of
quadratic algebras.

1. Introduction

The one-dimensional asymmetric simple exclusion process (ASEP) has been extensively
studied in mathematical and physical literature as one of the simplest models for non-
equilibrium statistical mechanics [1–4]. The ASEP is a model of particles diffusing on a lattice
driven by an external field with hard-core exclusion. A variety of different phenomena can
be described by the exclusion process, for instance superionic conductors [5], traffic flows [6]
and interface growth [7]. Exact results have been obtained for the one-dimensional exclusion
process with the help of various methods such as the Bethe Ansatz [8–11], and, more recently,
a matrix-product Ansatz (see, for example, [12]).

The matrix Ansatz has led to new exact results concerning the stationary state of various
models. Originally developed for the study of directed animals on a lattice [13], this method
has been successfully applied to the exclusion process with open boundaries [14]. It was
then extended to study shocks in systems with second-class particles [15], time-discrete
dynamics [16–21], and to calculate diffusion constants [22]. The algebras involved have
led to interesting representation problems [23].

Models with more than two classes of particles have hardly been investigated [24–26].
Here, we study an exclusion model with vacancies and three classes of particles on a ring.
Up to now, it was not known whether the matrix Ansatz could be used to construct an exact
solution of this model. In this paper, we shall give an exact expression for the stationary
state of our model by using a suitable matrix Ansatz that involves tensor products of quadratic
algebras. Apart from the question of as to how far the matrix Ansatz can be used, the model
is interesting in itself, because it is suitable for a detailed study of shocks [27]. In section 2,
we define the model and explain what the matrix Ansatz is. In section 3 we recall the matrix
solution for the asymmetric exclusion process with second-class particles. In section 4, we
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give an explicit representation of the operators that allow one to calculate the stationary state
of our model and present a proof of our solution. We also give an explicit solution for the
stationary state without using any representations. We then discuss an algorithm that allows
one to obtain exact properties of the stationary state for large systems by using a computer. The
concluding section discusses our results and some generalizations. The appendices contain
details of the proof and certain algebraic properties leading to recursion relations between
systems of different sizes.

2. Definition of the model

We consider a periodic one-dimensional lattice ofL sites. Each site of the lattice is either
empty or occupied by a single particle that can be of type 1, 2 or 3. For reasons that will
become apparent later on, we say that empty sites are occupied by holes (or vacancies) and we
shall call holesparticles of the fourth type. We denote the number of particles of typek in the
system bynk, wherek = 1, 2, 3, 4. The state of a sitei is specified by a discrete variableτi
that takes four possible values:

τi = 1, 2, 3 or 4 if sitei is occupied by a particle of type 1, 2, 3 or 4. (1)

The dynamics of the system is given by certain transition rules. During an infinitesimal
time step dt , the following processes take place on a bond(i, i + 1) with probability dt :

12→ 21 with rate 1

13→ 31 with rate 1

14→ 41 with rate 1

23→ 32 with rate 1

24→ 42 with rate 1

34→ 43 with rate 1.

(2)

All other transitions are forbidden. Obviously, the dynamics conserves the number of particles
and one has

∑4
k=1 nk = L. It is also clear from these rules that particles of typen can ‘overtake’

particles of typem only if n < m. The transition rules therefore induce a hierarchy among the
particles.

In the literature, particles of typek = 1, 2, 3 are namedfirst-, second-and third-class
particles. The model defined in (2) is ‘the totally asymmetric exclusion process (TASEP) with
three classes of particles and holes’.

Note that a first-class particle always behaves in the same way in regards to all the other
particles, whereas a third-class particle, for example, behaves like a first-class particle with
respect to the holes, but as a hole with respect to the second- and first-class particles.

The rules given in (2) are translationally invariant. Using this property, we can decide,
without loss of generality, that a particle of the third class occupies the site numberL and we
enumerate the different configurations of the system. The total number of configurationsNtot

is given by

Ntot = (L− 1)!

n1!n2!(n3− 1)!n4!
. (3)

The dynamics of the system can be encoded in a Markov matrixM of sizeNtot × Ntot.
The coefficientM(C, C′) of this matrix represents the rate of transition from a configurationC
to a different configurationC′; M(C, C) is the exit rate from a given configurationC. Due to
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the local structure of the rules (2),M can be written as a sum of local operators that represent
the transitions that take place at a bond(i, i + 1)

M =
L∑
i=1

mi,i+1. (4)

An explicit expression for the matricesmi,i+1 is given in the appendix.
In the long-time limit, the process reaches a stationary state in which each configuration

C of the system has a stationary probabilityp(C). The stationary state exists and is unique.
This follows from the fact that the rules (2) define an irreducible Markov process, i.e. any
given configuration can evolve to any other one. The properties of the stationary state can be
determined once the probabilitiesp(C)are known for allC. In equilibrium statistical mechanics
these numbers are given by the Boltzmann factor, but in our model there isa priori no method
to calculate these quantities: one has to solve the stationary master equation∑

C′
M(C, C′)p(C′) = 0. (5)

This is a system ofNtot coupled linear equations whose complexity grows exponentially with
the size,L, of the system.

The matrix Ansatz [14] consists of solving system (5) by writing the probabilitiesp(C)
as traces of products of four non-commuting operators,A1,A2,A3 andA4, each representing
one type of particle:

p(C) = 1

Z
Tr(Aτ1 . . . AτL) (6)

whereAτi is equal toAk if site i is occupied by a particle of typek (k = 1, 2, 3, 4) in
configurationC. The constantZ is an overall normalization factor, that depends onL andnk; it
ensures that

∑
p(C) = 1. Hence, the matrix Ansatz expresses the stationary weights as traces

over the algebra generated by the operatorsAk. The calculation of the stationary weights is
therefore reduced to the problem of finding this algebra (either an explicit representation, or
an abstract characterization via generators and relations) and computing traces over it.

In section 4, we shall present explicitAk operators (k = 1, 2, 3, 4) and prove that the
weightsp(C) constructed from (6) are solutions of the master equation (5). Certain properties
of the solution of the model with only first- and second-class particles (i.e. in our casen3 = 0)
are useful for constructing theAk operators. Therefore, we review this solution in the following
section.

3. Matrix solution of the TASEP with first- and second-class particles

Suppose initially, that there are only first-class particles and holes on the ring. In this case,
the steady state is such that all configurationsC have the same weight [28]. Assuming that
the last site is always occupied by a first-class particle, we obtain that the total number of
configurations will be (L−1)!

(L−n1)!(n1−1)! and each configuration has a stationary probability equal
to

p(C) = (n1− 1)!(L− n1)!

(L− 1)!
. (7)

In this simple case, a matrix Ansatz is not needed (one can choose the matrices representing
particles and holes to be both equal to the scalar 1).

We now consider the model defined in (2) without particles of type 3 (i.e.n3 = 0).
There aren1 first-class particles andn2 second-class particles. For this model, the stationary
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probability is non-uniform and was obtained in [15] from a matrix product Ansatz. Following
[15], we denote byD, E andA the operators that represent particles of type 1, 2 and holes,
respectively. The numbersp(C) obtained from expression (6) are the stationary probabilities
of the exclusion process with first- and second-class particles, if the three operatorsE, D and
A generate the quadratic algebra defined by the relations

DE = D +E

DA = A
AE = E.

(8)

It is convenient to work with an explicit representation of the algebra (8). A particularly
useful choice is

D =


1 1 0 0 . .

0 1 1 0
0 0 1 1
0 0 0 1 .

. . .

. .

 E =


1 0 0 0
1 1 0 0 . .

0 1 1 0
0 0 1 1
. . .

. . .



A = |1〉〈1| =


1 0 0 0
0 0 0 0 . .

0 0 0 0
0 0 0 0
. . .

. . .

 .
(9)

The operatorsD andE are represented by matrices that act on an infinite-dimensional
space with denumerable basis(|1〉, |2〉, . . . |n〉, . . .). The operatorA is a projector of rank 1
on the first element of the basis and has a finite trace. This ensures that any expression of the
type (6) is finite.

Using the algebraic rules (8) or the explicit representation (9), all stationary probabilities
are determined. In order to calculate physical quantities such as density profiles, or average
local currents, we must know the constantZ, which plays a role analogous to that of the
partition function. The expression forZ is simple if there is only one second-class particle in
the system, always located on the last site. In that case, one obtains [15]

Z = 1

L

(
L

n1

)(
L

n1 + 1

)
.

When the density of second-class particles is finite, asymptotic formulae forZ are derived for
systems of large size, using a grand canonical formalism [15].
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4. Matrix solution of the TASEP with first-, second- and third-class particles

4.1. Explicit forms of the matrices

We shall show that the stationary weights, solutions of the master equation (5), can be calculated
via Ansatz (6), from the following four operators:

A1 =


D 0 E 0 0 .

0 D 0 E 0 .

0 0 D 0 E .

0 0 0 D 0 .

0 0 0 0 D .

. . . . . .

 A2 =


D −E 0 0 0 .

0 0 0 0 0 .

0 0 0 0 0 .

0 0 0 0 0 .

0 0 0 0 0 .

. . . . . .



A3 =


E 0 0 0 0 .

D 0 0 0 0 .

0 0 0 0 0 .

0 0 0 0 0 .

0 0 0 0 0 .

. . . . . .

A4 =


E 0 0 0 0 .

0 E 0 0 0 .

D 0 E 0 0 .

0 D 0 E 0 .

0 0 D 0 E .

. . . . . .

 .
(10)

All matrices are infinite-dimensional and their coefficients are themselves the infinite-
dimensional operatorsD andE of (9) which satisfyDE = D + E and do not commute
with each other (i.e. scalar representations ofD andE are excluded). Another way to look at
the operators given in (10) is to consider them as matrices operating on an infinite-dimensional
space, with non-commutative elements. The operatorsA2 andA3 have only two non-zero
elements and the following relation holds:

A2A3 =


A 0 0 0 0 .

0 0 0 0 0 .

0 0 0 0 0 .

0 0 0 0 0 .

0 0 0 0 0 .

. . . . . .

 . (11)

HereA is the rank-one projector of (9). Before we prove that the stationary probabilities given
in terms ofAi solve the master equation (5), we have to ensure that they are finite. This is not
obvious because none of the operators given in (10) has a finite trace.

4.2. Proof of the finiteness of the Ansatz

We rewrite expression (6) for the stationary weights as follows:

p(C) = 1

Z
Tr(Aτ1 . . . AτL) =

1

Z
Tr(YA2XA3T ) (12)

whereY andT are products ofAk (k = 1, 2, 3, 4), andX is a product ofp (p 6 L − 2)
matricesA1 andA4 only. Such a factorization is possible: the termA2XA3 starts from the
furthermost (proceeding from left to right) factorA2 in (Aτ1 . . . AτL), and ends when anA3

appears for the first time after thisA2. Such a factorA3 always exists sinceAτL = A3.

We now prove that the matrixA2XA3, whereX is a product ofp factorsA1 andA4, can
only have non-zero elements in its first(p + 2) lines or columns. We shall say, in such a case,
thatA2XA3 is ‘of finite size(p + 2)’.

The operatorsA0 and A1 have two invariant subspaces, the subspace generated by
the odd vectors of the basis(|1〉, |3〉, . . . |2n + 1〉, . . .) and the subspace generated by
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(|2〉, |4〉, . . . |2n〉, . . .). The action ofA1 (and that ofA4) on both invariant subspaces is the
same. Therefore, the productX will be represented by the following matrix:

X =


χ 0 ? 0
0 χ 0 ? . .

? 0 ? 0
0 ? 0 ?

? . .

. . .

 . (13)

The symbol? denotes unspecified matrix elements. We emphasize that the coefficients(1, 1)
and(2, 2) of X are identical. This coefficient is a matrixχ which is a linear combination of
various products, each product havingp factors, and each factor being either aD or anE.

Using the expressions forA2, A3 andX, we find

A2XA3 =


DχE − EχD 0 0 0

0 0 0 0 . .

0 0 0 0
0 0 0 0
. . .

. . .

 . (14)

The productA2XA3 has only one non-zero coefficientDχE − EχD whereχ is a linear
combination of products ofp factorsD andE. Therefore, we need to show that ifM is any
product ofp factorsD andE, the matrixDME − EMD is finite of size(p + 2) at the most.
This is achieved by induction onp and by using the explicit representations ofD andE given
in (9).

Forp = 0,M = 1 we obtainDE − ED = A which is a matrix of size 1.
Now suppose that our assertion is true for(p − 1). Then, let the matrixM be a product

of p factorsD andE; if M = DM1 (the caseM = EM1 is similar), we have

DME − EMD = D(DM1E − EM1D) + (DE − ED)M1D.

By the induction hypothesis,DM1E−EM1D is finite of size(p + 1), and multiplying it byD
will increase its size by 1, at most (one verifies this by using the explicit representation given
in (9)). The operator(DE − ED)M1D is equal toAM1D and is of size less than or equal to
(p + 2).

We have shown that the factorA2XA3 in (12) is of finite size. Multiplying it on the left
or on the right by any of the operatorsA1, A2, A3 andA4 given by (10) does not alter this
property since theAk are composed ofD andE and have only a finite number of non-zero
coefficients in any line and any column. This proves that the matrix(Aτ1 . . . AτL) has a finite
trace and that the stationary probabilities given by (6) are well defined.

4.3. Proof of the Ansatz

We shall use the technique developed in [30] (see, for example, [19, 31] for details). We
represent the collection of the (unnormalized) stationary weightsp(C) as a state vector

|p〉 = Tr(A⊗L) (15)

where⊗ denotes the tensor product andA is a column vector, having matrices as entries:

A =


A1

A2

A3

A4

 . (16)
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This allows us to interpret the Markov equation (5) as a stationary Schrödinger equation
with the non-Hermitian ‘Hamiltonian’M:

M|p〉 =
L∑
i=1

mi,i+1|p〉 = 0. (17)

The matrixmi,i+1 is local and acts only on theith and the(i + 1)th element of the tensor
product in (15). We show thatmi,i+1[A⊗A] is a divergence-like term, i.e. there exists a vector
Â defined analogously toA

Â =


Â1

Â2

Â3

Â4

 (18)

such that

mi,i+1[A⊗ A] = A⊗ Â− Â⊗ A. (19)

Summation overi leads to a global cancellation, thereby proving that the Markov equation
(17) is satisfied. The proof rests upon finding four matrices,Â0, Â1, Â2 andÂ3, that satisfy
equation (19). In the appendix, we write the 16 quadratic equations that couple theAκ andÂκ
(see equations (A.1)–(A.3). An explicit representation of theÂκ that solves these equations is
given below (here1 denotes the identity matrix):

Â1 =


D/2 + 1 0 E/2− 1 0 .

0 D/2 + 1 0 E/2− 1
0 0 D/2 + 1 0 .

0 0 0 D/2 + 1 .

. . . . .



Â2 =


1−D/2 1− E/2 0 0 .

0 0 0 0 .

0 0 0 0 .

0 0 0 0 .

. . . . .



Â3 =


E/2− 1 0 0 0 .

1−D/2 0 0 0 .

0 0 0 0 .

0 0 0 0 .

. . . . .



Â4 = −


E/2 + 1 0 0 0 .

0 E/2 + 1 0 0 .

D/2− 1 0 E/2 + 1 0 .

0 D/2− 1 0 E/2 + 1 .

. . . . .

 .

(20)

Remark. There is one subtlety involved here. One should not only verify the cancellation
mechanism formally but also make sure that all the traces of all the products in (19) exist. In
all cases but one, this follows from section 4.2. However, the case when the last factor of the
trace isA2A3 needs extra care because the dynamics permutes these two factors. One needs to
prove the following relation, whereY denotes any product of the matricesAk, k = 1, 2, 3, 4:

Tr{Y (A3Â2 − Â3A2)} = Tr{Â2YA3− A2Y Â3)}. (21)

However, this identity can be proved via reasoning similar to that of section 4.2.
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4.4. Representation-free solution

Consider the following choice for theAi andÂi operators:

A1 = 1⊗D + (D − 1)2⊗ E (22)

A2 = A⊗D + (iA(D − 1))⊗ E (23)

A3 = A⊗ E + (i(E − 1)A)⊗D (24)

A4 = 1⊗ E + (E − 1)2⊗D (25)

and

Â1 = 1⊗ (1 +D/2) + (D − 1)2⊗ (E/2− 1) (26)

Â2 = A⊗ (1−D/2) + (iA(D − 1))⊗ (E/2− 1) (27)

Â3 = A⊗ (E/2− 1) + (i(1− E)A)⊗ (D/2− 1) (28)

Â4 = −{1⊗ (1 +E/2) + (E − 1)2⊗ (D/2− 1)} (29)

where againDE = E+D,A = DE−ED (projector) and where i= √−1. It is then possible
to show that these operators solve (A.1)–(A.3) and that, assuming a third-class particle at site
L, all the traces in (6) and (19) are real and finite. The calculation is very similar to the one
presented in the preceding section and will therefore be omitted here. We believe that this
representation-free solution will help to generalize our solution to the case of a model withN

types of particle.

4.5. Algebraic properties and recursion relations

Using our solution, it is straightforward to derive certain algebraic properties of theAi operators
and, therefore, to find recursion relations between systems of sizeL and (L − 1). Some of
these relations are listed in appendix B. In fact, we found theAi operators by solving the model
for small system sizes on the computer, guessing recursion relations and constructing suitable
operators which fulfilled these relations. We want to remark that it seems extremely unlikely
to us that a solution could have been constructed just by inspection of equations (A.1)–(A.3) of
appendix A. However, these equations turned out to be very useful for proving that the weights
given in terms ofAi are indeed the stationary weights.

4.6. Finite-size cut-off

We have shown that the matrix Ansatz using the operators given in (10) is well defined and
satisfies the master equation. How can the representation be used for actual computations for
systems of sizeL? The proof of the finiteness of the trace (section 4.2) provides a method
to numerically compute the weight of any configuration of sizeL without involving infinite
matrices. We showed that all the matrices used to evaluate the trace are of sizeL at most.
Therefore, the operatorsAκ ,D andE can be restricted to a finite size3, with3 large enough
to ensure that theL×Lmatrices needed to calculate the weights are the same as those obtained
by multiplying infinite-dimensional matrices. Such a cut-off procedure is possible due to the
bidiagonal structure ofAκ and ofD andE. For example, if we limitD andE to a finite
sizeN and consider a product ofp such matrices, the(N − p − 1) first rows and columns
of the resultant matrix will be the same as those obtained by taking the product of the initial
infinite-dimensional matrices. To compute the weights of systems of size less thanL, we must
take3 > 2L. The computation time using the matrix Ansatz grows algebraically with the
system size, whereas the increase is exponential for solving the master equation. Thus our
solution allows an exact numerical study of such systems for large sizes [27].
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To determine the currents and the density profiles, one needs the normalization factorZ.
Using exact results for systems of sizes up to 8, we guessed the following formula forZ for
the case when there is only one particle of the third type (n3 = 1) andn1, n2, n4 6= 0:

Z = 1

L

(
L

n1

)(
L

n1 + n2

)(
L

n1 + n2 + 1

)
.

5. Conclusion

We have studied a generalization of the asymmetric exclusion process to a system with three
classes of particles and holes. This model can be mapped to an integrable two-dimensional
vertex model of equilibrium statistical physics [10], but the Bethe Ansatz does not allow a
simple determination of the stationary state of the ASEP. However, the stationary weights
can be calculated via a matrix-product Ansatz. Although analytical formulae may be difficult
to derive (the computation of the constantZ will require calculations similar to those of the
diffusion constant of an open system [29]) the matrix Ansatz enables a much faster exact
numerical computation of the stationary state of finite-size systems.

Our main interest is theoretical. We wanted to know what kind of matrix Ansatz (if any)
would appear in multi-species processes. Some authors [24,25,32,33] have used generalized
quadratic algebras to study systems with many species. Associativity [25] and the finite trace
condition [33] impose severe restrictions on the rates of exchange between different types
of particles. The simple rates we choose (2) do not satisfy these limitations. Hence theAκ
operators we have found do not satisfy quadratic identities, but rather can be obtained as
elements of the tensor product of two quadratic algebras. As emphasized in section 4.5 and
in appendix B, the identities that are satisfied by theAκ matrices can be cubic, quartic or of
any higher order. We believe that the tensor structure we have obtained is fairly general. If
for some special choices of the transition rates in (2), the matricesD andE can be taken to be
scalars [14], the matrices given in (10) will satisfy quadratic relations.

There is a recursive structure when one adds new types of particles. The exclusion process
with only one class of particles is solved by taking the matrices representing holes and particles
to be both equal to 1. For two classes, the matricesD, E andA are infinite-dimensional
matrices with coefficients of 1. For the three classes problem, the matrices given in (10) are
infinite-dimensional withD andE as coefficients.

It is therefore natural to define a generalization of the exclusion process forN types of
particles, with a priority rule such that a particle of typen can overtake a particle of typem if
and only ifn < m. This model is still integrable, and some exact results can be obtained via
a Bethe Ansatz. Besides, from numerical solution of small systems one finds many relations
between the rates and the matrices representing each type of particle [34]. We hope that our
solution will help to find a solution for this generalized problem.

We have only studied the totally asymmetric exclusion process, it may be interesting to try
to solve the partially asymmetric exclusion process where all the rules in (2), such as ‘12→ 21
with rate 1’, are modified as follows:

12→ 21 with ratep

21→ 12 with rateq
(30)

withp+q = 1. We believe that a suitable tensor product structure should allow one to compute
the ground state of this model. Since such a model could presumably display spontaneous
symmetry breaking [35], this would be of special interest.
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Appendix A. Explicit form of the local Markov matrix

The local Markov matrixmi,i+1 that describes the updating of a bond(i, i + 1) is given in the
canonical basis(11), (12), (13), (14), (21), (22), . . . , (44) by a 16× 16 matrix:

mi,i+1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

The local divergence condition (19) translates into the following 16 coupled quadratic
equations:

AiAj = ÂiAj − AiÂj for i < j (A.1)

AiAj = AjÂi − ÂjAi for i < j (A.2)

0= AiÂi − ÂiAi for all i (A.3)

where 16 i, j 6 4.

Appendix B. Algebraic properties and recursion relations

The matrix algebra method is a way to encode recursion relations between stationary
probabilities of systems of sizeL and(L− 1). For some simple models, the matrices can be
constructed using ‘empirical’ recursion relations observed on exact solutions for small systems.
In our case, a complete set of such relations between sizeL and size(L − 1) is difficult to
obtain. However, the matricesA1, A2, A3 andA4 given in (10) satisfy a number of algebraic
identities that allow one to deduce some recursions between system of different sizes. We now
describe some of the relations satisfied by the matricesAk.
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(1) The matricesA1 andA4 satisfy the identity that was found in [29] which was used to
compute the diffusion constant for an open system:

A1A
p−1
4 (A4A1− A1A4)A

q−1
1 A4 = Ap4Aq1A4 − A1A

p−1
4 A

q

1A4 − A1A
p

4A
q−1
1 A4

+A1A
p

4A
q

1 (B.1)

wherep andq are strictly positive integers.
(2) Some relations reduce the system size and are reminiscent of theDE = D + E identity

in (8). However, the following relations are cubic and not quadratic:

A2A2A4 = A2A2 +A2A4

A1A3A3 = A1A3 +A3A3.
(B.2)

(3) Other relations are similar to the second and the third equality in (8):

A2A2A3 = A2A3

A2A3A3 = A2A3

A2A3A2A3 = A2A3.

(B.3)

This last equality shows that the operator(A2A3) is a projector as we noted in (11).
(4) Some rules transform some particles into others without reducing the size of the system:

A1A2 = A2A2

(A1A4 − A4A1)A2 = A2A4A2

A3A4 = A3A3

A3(A1A4 − A4A1) = A3A1A3

A3A2A4 = A3A2A3 +A3A3A2

A1A3A2 = A2A3A2 +A3A2A2.

(B.4)

We emphasize that the identities (B.1)–(B.4) are just asubsetof the complete set of
relations satisfied by theAk operators that would be needed to give an abstract characterization
of the algebra generated byAk via generators and relations.
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